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Abstract. We propose to start each video-on-demand program by two or three short
previews of coming attractions as it is customarily done in movie thcaters and on
videocassettes. These previews will be cheap to distribute for they can be viewed in
any order. As we will show, they can significantly reduce the bandwidth
requirements of most video distribution protocols, among which, stream tapping and
most static and dynamic video broadcasting protocols. The sole exception scems to
be fixed-delay broadcasting protocols that limit the receiving bandwidth of the
customers’ set-top boxes to two channels. In that case, the bandwidth used for
distributing the previews temporarily reduces the bandwidth that remains available
to the fixed-delay broadcasting protocol, which results in a significant increase of
the server bandwidth required to achieve a given customer waiting time.

1 Introduction

When we go watch a movie in a theater, when we put a videocassette in our VCR, we are
to watch first a few short previews of coming attractions. The main purpose of these
previews is to entice us either to come back to the thcater for another movie or to rent
more videocassettes.

We think that video-on-demand (VOD) services should follow the same approach and
start their programs by two to three short previews. First, it would allow them to advertise
their current and future offerings. Second, it could significantly reduce the bandwidth
requirements of the service.

This is an important issue because distributing videos on demand necessitates vast
amounts of bandwidth and these high bandwidth requirements are the main reason for the
very high cost of VOD services. Reducing this cost is an imperative because VOD has to

compete against cheaper well-established rivals such as videocassette rentals or pay-per-
view.
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This situation has resulted in numerous proposals aiming at reducing the bandwidth,
requirements of VOD services. All these proposals can be broadly classified into three
main categories. All proposals in the first group follow a strict proactive approach. They
partition each video into segments and retransmit theses segments according to a fixed
schedule guaranteeing that any customer having waited for a given maximum delay w wij|
be able to watch the whole video without any interruption. The simplest proactive
protocol is staggered broadcasting. 1t consists of broadcasting each video on k distinct
channels with each broadcast starting an offset D/k, where D is the duration of the video,
More sophisticated proactive protocols, such as pyramid broadcasting [17], can achieve
shorter customer waiting times at much lower bandwidth costs. These protocols require
customer set-top boxes that can receive video data at at least twice the video consumption
rate and have cnough local storage to store up to one half of the video duration.

Proactive protocols work well for videos that are in high demand such as the ten to
twenty videos that are “hot” at any time. Reactive protocols take a less radical approach
and do not require the video server to transmit any data in the absence of any request for
the video. They try however to share as many data as possible among overlapping
requests for the same video. Some of the earliest reactive solutions include batching [5]
and piggybacking (8]. More recent proposals such as stream tapping (2, 3] or
hierarchical multicast stream merging [6] save more bandwidth but also require customer
set-top boxes that can receive video data at at least twice the vidco consumption rate and
have enough local storage to store at least ten to twenty minutes of video.

A third group of solutions are reactive in nature but behave like proactive solutions
once the customer request arrival rate reaches some saturation point [11, 18]. They work
best for videos whose popularity varies over time.

As we will see, all three approaches can benefit from starting each video program with
a few minutes of previews. Previews are cheap to distribute for they can be viewed in any
order. They also provide the customer with something interesting to watch while waiting
for the beginning of the video. This would allow us to stretch this delay and reduce the
bandwidth requirements of nearly every video distribution protocol. We need however to
qualify this statement: some broadcasting protocols require the customer set-top box to
start accumulating video data while the customer is still waiting for the video. This is the
case for the GEBB protocol [9) and the fixed-delay pagoda broadcasting protocol [15]).
Whenever the receiving bandwidth of the customer sct-top boxes is limited to two
channels, the bandwidth used for distributing the previews will temporarily reduce the
bandwidth that remains available to the protocol. This will result in a significant increase
of the server bandwidth required to achieve a given customer waiting time.

The remainder of the paper is organized as follows. Section 2 reviews relevant previous
work on video distribution protocols. Section 3 shows how to use previews to mask the
latency of reactive protocols and reduce the bandwidth requirements of proactive
protocols. Section 4 compares our approach with partial preloading. Finally, Section 5
has our conclusions.
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Figure 1. The first three channels for the fast broadcasting protocol

2 Previous Work

We will only mention those protocols that are the most relevant to our work. The reader

interested in a more comprehensive review of proactive protocols may want to consult
reference [4].

Proactive protocols

The simplest proactive protocol is Juhn and Tseng's fast broadcasting (FB) protocol (12].
It allocates to each video k channels whose bandwkidths are all equal o the ‘”de‘:
consumption rate b. It then partitions each video into 2* — 1 segments, S, to Sy'_,, of equa
duration d.

As Figure 1 indicates, the first channel continuously rebroadcasts scgment Sy, the
second channel transmits segments S; and S;, and the third channelllransmlts segments S,
to S7. More generally, channel j with 1 Sj<k transmits segments S7° to §7.1.

When customers want to watch a video, they wait until the begllnnlng.of the next
transmission of segment S,. They then start watching that segment while their STB starts
downloading data from all other channels. Hence the maximum customer waiting time 1?
equal to the duration of a segment. Dcfine a slof as a time interval cqual to the duration o
a segment. To prove the correctness of the FB protocol, we need only to observe that
each segment S; with 1 <i<2*— ] is rebroadcast at least once every i slot. Thqn anl)l'
client STB starting to receive data from all broadcasting channels will always receive a
segments on time. . . ¢ of

The FB protocol does not require customer STBs to wait for any minimum arr?ouncl
time. As a result, there is no point in requiring customer STBs to start downloadmgd ;'na
Wwhile customers are still waiting for the beginning of the video. The newer ﬁxed—l.e ay
pagoda broadcasting (FDPB) protocol [15] requires al.l users to wait for a fixed (;lt; .:y w
before watching the video they have selected. This waiting time is normally a multip Fl’"
of the segment duration d. As a result, the FDPB protocol can partition each vidco 1;; o
much smaller segments than FB with the same number of channcls. Smce these sm::l er
segments can be packed much more efficiently into thc' k channels assigned to the y;‘ lc:
the FDPB protocol achieves smaller customer waiting times than an FB protocol with the
same number of channels i

Figure 2 displays the segment-to-channel mappings of a F[?PB protocol rc}?ulfl:m%
customers to wait for exactly 9 times the duration of a segment. Given that delay, the firs
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Figure 2. How the fixed-delay broadcasting protocol maps its first five channels.

segment of the video will need to be broadcast at least once every 9 slots. The protocol
will use time division multiplexing to partition the first channel into V9 subchannels with
cach subchannel containing one third of the slots of the channel. The first subchannel will
continuously broadcast segments S; to Sy ensuring that these segments are repeated
exactly once every 9 slots.

Observe that the next segment to be broadcast, segment S; needs to be broadcast once
every 12 slots. Hence the second subchannel will transmit segments S; to S7 ensuring that
these segments are repeated cxactly once every 12 slots. In the same way, the third
subchannel will broadcast segments Sy to S, ensuring that these segments are repeated
exactly once every 15 slots.

The process will be repeated for each of the following channels partitioning cach
channel into a number of subchannels equal to the square root of the minimum periodicity
of the lowest numbered segment to be broadcast by the channel. Hence channel C; will be
partitioned_into 5 subchannels because segment Sy needs to be repeated every 21 slots
and 5=+21. Asa result, the protocol will map segments S)3to Sy, into the 5 subchannels
of the second channel. Applying the same process on channels C; to Cs, the protocol will
be able to map 814 segments into five channels and achieve a deterministic waiting time
of 9/814 of the duration of the video, that is, 80 seconds for a two-hour vidco.

Reactive protocols

Stream tapping (2, 3] or patching [10], assumes that each customer STB has a buffer
capable of storing at least 10 minutes of video data. This buffer will allow the STB to
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Figure 3. Stream tapping.

“tap” into streams of data on the VOD server originally created for other clients, and then
store  these data until they are needed. In the best case, clients
€an use most of the data from the existing stream, and greatly reduce the amount of time
they need their own stream.

Stream tapping defines three types of streams. Complete streams read out a video in its
entirely. These are the streams clients typically tap from. Full tap streams can be used if a
complete stream for the same video started A < [ minutes in the past, where B is the size
othe .client buffer, measured in minutes of video data. In this case, the client can begin
receiving the complete stream right away, from its buffer, which will then always contain
a moving A-minute window of the video. Stream tapping also defines partial tap streams,
which can be used when A > [ . In this case clients must go through cycles of filling up
and then emptying their buffer since the buffer is not large enough to account for the
complete difference in video position. To use tap streams, clients only have to receive at
most two streams at any one time. If they can actually handle a higher bandwidth than
(h}s, they can use an option to the protocol called extra tapping. Extra tapping allows
clients to tap data from any stream on the VOD server, and not just from complete
streams. .Figurc 3 shows some example streams from the VOD server's perspective.
Stream a is a complete stream, and it must exist for the entirety of the video. Stream b is a
full tap stream starting A, minutes after stream a. It only has to exist for A, minutes.
Stream ¢ is another full tap stream, but it is able to use extra tapping to tap data from
stream b, and so its service time is much smaller than A .

Eager, Vernon and Zahorjan's hierarchical multicast stream merging (HMSM) protocol
[6] is a reactive protocol that never requires the STB to receive more than two streams at
the same time. Selective catching combines both reactive and proactive approaches. It
dedicates a certain number of channels for periodic broadcasts of videos while using the
other channels to allow incoming requests to catch up with the current broadcast cycle [7].
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Figure 4. Broadcasting two previews over two channels

Other techniques

Basu ef al. [1] have proposed inserting advertisements in video programs to give more
time to incoming requests to catch up with earlicr requests. Their technique does not
require customer STBs to buffer any significant amount of vidco data and greatly
improves the performance of piggybacking protocols [8].

Partial preloading {13-14, 16] loads in the customer STB the first few minutes of the
top 10 to 20 videos in order to provide zero-delay access to these videos and reduce the
server bandwidth required by the remainder of the video. It applies to both proactive and
reactive distribution protocols.

3 Implementation

We discuss first how previews can be distributed and show then how to use previews to
mask the latency of a fixed-delay broadcasting protocols and reduce the bandwidth
requirements of stream taping protocols.

Distributing previews

We will focus here on the simplest case where all customers watch the same previews.
More targeted stratcgies are possible but they would also require more server bandwidth.

The cheapest way to distribute the previews is to broadcast them in sequence on a single
channel. Since previews can be watched in any order, the average customer waiting time
will be cqual to one half of the average duration of a preview. A much better quality of
service could be achieved by broadcasting the previews on two channels. As seen on
Figure 4, adding an extra channel would allow us to partition each preview into three
segments and achicve an average customer waiting time equal to one sixth of the average
duration of a previcw. Since most previews last around two minutes, this means an
average waiting time of 20 seconds (and a maximum waiting time of 40 seconds).

Using previews to mask the latency of a fixed-delay broadcasting protocol

Fixed-delay broadcasting protocols, such as the GEBB protocol [9] and the FDPB
protocol {15], could greatly benefit from our approach. Consider for instance the case ofa
FDPB protocol with m =9. As we saw earlier, it requires 5 channels to achieve a waiting
time of 40 scconds for a two-hour video. Assume now that each video is preceded by 4
minutes of previews. As shown on Figure 2, 4 channels suffice to partition the video into
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Figure 5. How the FDPB protocol maps its first six channels when the STB receiving bandwidth is
limited to two channels.

308 segments and achieve a waiting time of 9/308 of the video duration. This waiting time
would be completely masked by the 4 minutes of previews as long as the video lasts less
than 4x308/9 = 137 minutes. Increasing the duration of the previews to five minutes
would allow us to mask the latency of videos lasting up to 5%x308/9 = 171 minutes, that is,
almost three hours.

Hence we could reduce the bandwidth requirements of the FDPB by 20 percent by
having customers watch between four and five minutes of previews before each video.

Handling set-top boxes that cannot receive more than two channels at the same time

Like most other broadcasting protocols, the FDBP protocol assumes that the STB can and
will simultaneously receive data from all the channels on which the various segments of
the video are broadcast. This requircment complicates the design of the STB and
increases its cost.

Fortunately, the FDPB protocol can be easily modified to handle customers connected
to the video-on-demand service through a STB that cannot reccive data at more than twice
the video consumption rate [15). Consider the case of a FDPB protocol with m = 9 that
interacts with STBs that cannot receive video data from more than two channels. As
shown in Figure 5, the segment-to-channel mappings of the first two channcls are
unchanged. The first mappings to be affected are those of channel C; as the STB must
now wait until it has reccived all data from the first channel before starting to receive data
from channel C;.

The last segment broadcast by the first channel is segment S;,. As shown on Figure 2, it
is broadcast once every 15 slots. The first segment broadcast by channel C; is scgment
Sa. Recalling that the customer waiting time is equal to 9 slots, we see that scgment Sy
must now be broadcast at least once every 43 + 8 — 15 =36 slots. Similarly segment Sas
has now to be broadcast at least once every 44 + 8 — 15 = 37 slots and so on. As a result,
channel C; will now be partitioned into «/% =6 subchannels and will broadcast segments
Sy to Sys.  The process will be repeated on the remaining channels subject to the
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Figure 6. How the FDPB protocol maps its first six channels when the STB receiving bandwidth is
limited to two channels and the customer watches previews while waiting for the video.

restriction that the STB cannot receive data from channel C; for j 2 3 until it has finished
receiving data from channel C, ..

As we can sce from Figure S, the FDPB protocol will now need 6 channels to achieve a
waiting time of 9/674 of the vidco duration, that is, 96 seconds for the same two-hour
video. ’

Assume now that we want to mask this waiting time by having the customer watch one
short preview. Since this preview will occupy one of the two channels the STB can listen
to at any given time, the STB will not be able to receive data from channel C, until after
the STB has finished recciving the previews. In our case, this means that the first segment
broadcast by channel C,, that is, segment S;; will now have to be repeated at least once
every 12 slots instead of at least once every 12 + 8 = 20 slots. Consequently, channel C;
will only be able to broadcast segments S;3 to Sz, that is, 15 segments instead of the 30
segments it was previously broadcasting. This will result in much less efficient mappings
for the each and every channel for all segments will now have to be repeated more
frequently than before.

As we can see on Figure 6, having customers watching previews while waiting for the
video of their choice has a dramatic impact on the performance of the FDPB protocol,
which can only pack now 391 scgments into six channels. As a result, the customer
waiting time for a two-hour video will be equal to 7200%9/391 = 203 seconds.

We can thus characterize the benefits of having customers watching previews while
waiting for the vidco of their choice as rather dubious. First and foremost, we will not
save any bandwidth. Second, it is not clear that the customer will prefer waiting for
almost three minutes while watching previcws to waiting for slightly more than onc
minutc and half in front of a blank screen.

Using previews to reduce the latency of a stream tapping protocol

Stream tapping and hicrarchical multicast stream merging have two major advantages
over broadcasting protocols. First, they provide true instant access to the video. Sccond,
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they require much less bandwidth than broadcasting protocols to distribute videos that are
not requested more than ten times per hour for a two-hour video.

Unfortunately, the same is not true at higher request arrival rates. Since they handle all
customer requests one by one, proactive protocols require much more bandwidth than
most broadcasting protocols whenever the request arrival rate exceeds 20 requests per
hour. One attractive solution would be to start each video program by four to five
minutes of previews. This would have the same effect as batching requests together over
a fixed batching interval equal to the duration of these previews and would greatly reduce
the number of video streams that the server has to manage.

To estimate the impact of these previews on the protocol bandwidth requirements, we
can observe that starting each video program by Dp minutes of previews is equivalent to
limit the customer arrival rate to at most one arrival each Dp minutes. Previous simulation
studies have shown that stream tapping with all its bandwidth savings options activated
requires an average of 5.55 channels to satisfy 20 requests per hour for a two-hour video
[14). Hence starting each video with as little as three minutes of previews should allow us
to satisfy any number of requests with an average bandwidth of 5.5 channels.

Increasing the durations of the previews to five to six minutes would result in further
bandwidth reductions. For instance, starting each video with six minutes of previews
would reduce the average bandwidth required to distribute a video to 4.09 channels, a
figure quite similar to the bandwidth requirements of a FDPB protocol starting each video
program with four minutes of previews.

Using previews with hybrid distribution protocols

These protocols, also known as dynamic broadcasting protocols, are reactive in nature but
behave like proactive protocols once the customer request arrival rate reaches some
saturation point [11, 18]. Hence, their bandwidth requirements are bounded, which
distinguishes them from purely reactive protocols.

This distinction becomes blurred once we introduce previews. As we have just seen,
adding previews to video programs puts an upper bound on the bandwidth requirements of
a purely reactive protocol such as stream tapping. As a result, one of the motivations for
using hybrid distribution protocols will disappear. We should focus instead on the actual
performance of hybrid protocols all over the range of request arrival rates. An efficient
hybrid protocol, such as the channel-based heuristic distribution protocol [18], would still
perform as well as a stream tapping protocols at low request arrival rates while requiring
significantly less bandwidth at high request arrival rates.

4 Comparison with Partial Preloading

Starting each video program by a few minutes of previews can have a dramatic impact on
the bandwidth requirements of most video distribution protocols. In fact, it compares
favorably with partial preloading [13-14, 16]. Starting each video program with x min-
utes of previews provides nearly the same results as having the first x minutes of each
video preloaded in the customer STB.
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Consider, for instance the case of the FDPB protocol. We have seen that having
customers watch between four and five minutes of previews before each video would
allow us to broadcast videos on four channels instead of five. This is not very different
from what we could achieve by partitioning each video into 317 segments and by having
the first 9 segments preloaded in the customer STB. As Figure 2 shows, the remaining
308 segments could then be broadcast on 4 channels. In both cases, we would have to
factor the cost of the one or two additional channels required to broadcast either the
previews or the initial segments of each video but the cost of these additional channels
could be shared among all the videos being broadcast by the server.

There are however some important differences between the two techniques. First,
prepending previews is much easier to implement for it does not require any negotiation
with the customer STB. Second, applies to all videos while partial preloading only
applies to a limited number of presumed popular videos.

On the other hand, partial preloading does not force customers to watch a few minutes
of previews before watching the video of their choice. Hence the amount of previews we
can force the customer to watch is quite limited.

Combining both techniques could be an attractive proposition. We do not believe it
would make much sense to preload previews in the customers’ STBs for it would not lead
into any significant bandwidth improvements. A more attractive option would be to make
partial preloading optional and have customers who do not have the first few minutes of
the video preloaded on their STB watch more previews than those who have them.

S Conclusion

Starting each video program by four to five minutes of previews would only require one
to two additional video channels and could significantly reduce the bandwidth
requirements of most video distribution protocols. In particular, it would reduce by 20
percent the bandwidth requirement of a fixed-delay pagoda protocol and would put an
upper bound on the bandwidth requirements of stream taping protocols. Fixed-delay
broadcasting protocols that limit the receiving bandwidth of the customer set-top boxes to
two channels seem to be the sole exception. In their case, the bandwidth used for
distributing the previews temporarily reduces the bandwidth that remains available to the
fixed-delay broadcasting protocol, which results in a 20 to 25 percent increase of the
server bandwidth required to achieve a given customer waiting time.
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